Multiband superconductivity in interface superconductors

Jonathan Edge edge@kth.se

- Multiband superconductivity
- STO and LAO/STO
- Probes for multiband SC
- Multiband signature in H_{c2}
- Results for Hc2 in STO and LAO/STO

JME & A.Balatsky arXiv:1401.5318

Multiband superconductivity in interface superconductors

Jonathan Edge edge@kth.se

- Multiband superconductivity
- STO and LAO/STO
- Probes for multiband SC
- Multiband signature in H_{c2}
- Results for Hc2 in STO and LAO/STO

Ordinary single band superconductivity

- One band crossing Fermi energy
- Pairing between opposite sides of the Fermi surface opens a gap Δ in the density of states

Ordinary single band superconductivity

- One band crossing Fermi energy
- Pairing between opposite sides of the Fermi surface opens a gap Δ in the density of states

Ordinary single band superconductivity

- One band crossing Fermi energy
- Pairing between opposite sides of the Fermi surface opens a gap Δ in the density of states

Suhl, PRL 1959

- Two bands crossing the Fermi energy
- Two (different)
 gaps Δ open up

Suhl, PRL 1959

 Two bands crossing the Fermi energy

Two (different)
gaps Δ open up

Suhl, PRL 1959

 Two bands crossing the Fermi energy

Two (different)
gaps Δ open up

- Intrinsically interesting extension of superconductivity
- Allows for the interplay between the two gaps, novel dynamics
- Increasing number of materials are found to be multiband superconductors

- Intrinsically interesting extension of superconductivity
- Allows for the interplay between the two gaps, novel dynamics
- Increasing number of materials are found to be multiband superconductors

Our interest: is the specific material SrTiO3 (STO) and the interface between LaAlO3 (LAO) and STO a multiband superconductor?

Examples of Multiband SCs

• MgB2 (2001)

Fe based superconductors (2008)

Nagamatsu, J. et al., 2001

 various heavy fermion SCs (PrOs₄Sb₁₂ (2005), CePt₃Si,

Seyfarth, PRL 2005

Mukuda, JPSJ 2009

uranium compounds...)

Detecting Multiband SC

 Tunnelling spectroscopy: multiple coherence peaks

superfluid density

Heat transport

upper critical field

Strontium Titanate (STO)

- Wide bandgap insulator, bandgap ~3eV
- Doping with Nb, La or oxygen vacancies make it conducting
- Ferroelectric instability nearly developed
- Has been studied experimentally and theoretically for 50 years

Mannhart, Nature 2004

Superconductivity in STO

- First oxide superconductor to be discovered
- Doping-tunable SC dome
- Inspired the search which resulted in high Tc cuprate SC
- First material discovered to be a multiband supeconductor

Koonce et al PR 163 380

Superconductivity in STO

- First oxide superconductor to be discovered
- Doping-tunable SC dome

Binnig, PRL1980

- Like STO, LaAlO3 (LAO) is also an insulator (band gap ~ 5eV)
- But: when interface pure STO and LAO find a metallic interface layer

- Like STO, LaAlO3 (LAO) is also an insulator (band gap ~ 5eV)
- But: when interface pure STO and LAO find a metallic interface layer

STO

- Like STO, LaAlO3 (LAO) is also an insulator (band gap ~ 5eV)
- But: when interface pure STO and LAO find a metallic interface layer

STO

- Like STO, LaAlO3 (LAO) is also an insulator (band gap ~ 5eV)
- But: when interface pure STO and LAO find a metallic interface layer

- Like STO, LaAlO3 (LAO) is also an insulator (band gap ~ 5eV)
- But: when interface pure STO and LAO find a metallic interface layer

- Like STO, LaAlO3 (LAO) is also an insulator (band gap ~ 5eV)
- But: when interface pure STO and LAO find a metallic interface layer

Superconductivity at the LAO/STO interface

- Metallic layer turns superconducting at low T
- For 3 layers of LAO, STM superconducting areas can be patterned with STM on nm scale
- Holds the promise for SC circuits and devices

Reyren, Science 2007

Cen, Nat. Mat. 2008

Central question: What is the relation between bulk and interface STO?

- Tc is similar (≅300mK), robust to quality variations of the sample/interface material
- As a function of doping/gate voltage a narrow superconducting dome appears.

Is LAO/STO a multiband SC, like STO?

Probes which have tried to address this issue

Tunnelling spectroscopy

compare

Superfluid density

compare

Is LAO/STO a multiband SC, like STO?

Other potential probes

- Heat transport
- Heat capacity
- impractical for interface

Lin 1409.2423

Suggest looking at the upper critical field H_{c2} as a probe for multiband superconductivity in LAO/STO

H_{c2} as a probe for multiband SC in LAO/STO and STO

H_{c2} is one of the few probes applicable both to the bulk and interface system

- Calculate expected H_{c2} behaviour for both bulk and interface
- Show characteristic multiband behaviour
- Allows direct comparison of bulk and interface system

Disordered bulk STO: quasiclassical Usadel equations

• Solve linearised Usadel equations with a B-field $H \parallel \hat{\vec{z}}$.

$$2\omega f_m - D_m \left(\nabla_x^2 + \nabla_y^2 + \nabla_z^2 + \frac{4\pi i H x}{\phi_0} \nabla_y - \frac{4\pi^2 H^2 x^2}{\phi_0^2} \right) f_m = 2\Delta_m$$

m: band index $(\in \{1, 2\})$,

 D_m : Diffusion coefficient in the band

 f_m : quasiclassical anomalous Green's function

- Linearised: valid for infinitesimal gaps Δ , so at T_c .
- 2-band gap equation:

$$\Delta_m = 2\pi T \sum_{\omega>0}^{w_D} \sum_{m'} \lambda_{mm'} f_{m'}(\vec{r}, \omega)$$

 λ : coupling constants

• Solving this equation gives pairs (H, T) and since $T = T_c$ (linearised equations) we get pairs (H_{c2}, T_c) .

Results for H_{c2}

JME & Balatsky, arXiv:1401.5318

Solve for two sets of parameters:

$$\eta = D_2/D_1$$

Parameters: Fernandes, PRB 2013

$$\lambda_{11} = 0.14, \lambda_{22} = 0.13, \lambda_{12} = 0.02$$

Parameters: Bussmann-Holder, Ferroelectrics 2010

$$\lambda_{11} = 0.3, \lambda_{22} = 0.1, \lambda_{12} = 0.015$$

Interface system

Thin superconducting layer

- retain ∇_z term in the Usadel equation
- Incorporate the effects of Rashba spin-orbit coupling

Finite thickness

• need to retain ∇_z term in

$$2\omega f_m - D_m \left(\nabla_x^2 + \nabla_z^2 - \frac{4\pi^2 H^2 x^2}{\phi_0^2} \right) f_m = 2\Delta_m$$

- At the boundary to the vacuum, $\Delta = 0$
- An an interface between a SC and a metal $\frac{\mathrm{d}\Delta}{\mathrm{d}z}=0$
- thickness: d~12 nm
- $\bullet \quad \nabla_z^2 \to -\frac{\pi^2}{4d^2}$
- Incur an extra energy cost: effectively H increases

Spin-orbit coupling (SOC) at the interface

- Due to inversion symmetry breaking get strong Rashba SOC
- Leads to a modification of the momentum operator, anomalous Green's function f becomes a matrix

$$\nabla_x f \to \nabla_x f + \frac{i\alpha m_e}{\hbar} [\sigma_y, f] \quad \alpha : \text{SOC coupling strength}$$

- singlet and triplet components of f get coupled
- Concentrate on dominant singlet component
- singlet f gets energy penalty

LAO/STO results

$$\lambda_{11} = 0.14, \lambda_{22} = 0.13, \lambda_{12} = 0.02$$

Comparison: bulk STO results

Conditions under which H_{c2} is a useful probe

Hc2 is useful when

• $\lambda_{11} \approx \lambda_{22}$

$$\lambda_{12} \ll \lambda_{11}$$

$$\eta = \frac{D_2}{D_1} = 0.1$$

Hc2 and superfluid density are complementary probes

• Superfluid density useful when: $\lambda_{11} \gg \lambda_{22}$

following Kogan, PRB 2009

• Upper critical field Hc2 useful when: $\lambda_{11} \approx \lambda_{22}$ measure onset of SC

Summary

- Multiband superconductivity: Two or more gaps open
- Various techniques for detecting MBSC
- LAO/STO interface: metallic layer

- Upper critical field H_{c2}: Probe for multiband superconductivity - applicable to bulk and interface
- SF density and H_{c2} are complimentary probes

Summary

- Multiband superconductivity: Two or more gaps open
- Various techniques for detecting MBSC
- LAO/STO interface: metallic layer

- Upper critical field H_{c2}: Probe for multiband superconductivity - applicable to bulk and interface
- SF density and H_{c2} are complimentary probes
 Thank you!

